Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 235: 116570, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423356

RESUMO

Sulfonylurea herbicides have been widely used worldwide and play a significant role in modern agricultural production. However, these herbicides have adverse biological effects that can damage the ecosystems and harm human health. As such, rapid and effective techniques that remove sulfonylurea residues from the environment are urgently required. Attempts have been made to remove sulfonylurea residues from environment using various techniques such as incineration, adsorption, photolysis, ozonation, and microbial degradation. Among them, biodegradation is regarded as a practical and environmentally responsible way to eliminate pesticide residues. Microbial strains such as Talaromyces flavus LZM1, Methylopila sp. SD-1, Ochrobactrum sp. ZWS16, Staphylococcus cohnii ZWS13, Enterobacter ludwigii sp. CE-1, Phlebia sp. 606, and Bacillus subtilis LXL-7 can almost completely degrade sulfonylureas. The degradation mechanism of the strains is such that sulfonylureas can be catalyzed by bridge hydrolysis to produce sulfonamides and heterocyclic compounds, which deactivate sulfonylureas. The molecular mechanisms associated with microbial degradation of sulfonylureas are relatively poorly studied, with hydrolase, oxidase, dehydrogenase and esterase currently known to play a pivotal role in the catabolic pathways of sulfonylureas. Till date, there are no reports specifically on the microbial degrading species and biochemical mechanisms of sulfonylureas. Hence, in this article, the degradation strains, metabolic pathways, and biochemical mechanisms of sulfonylurea biodegradation, along with its toxic effects on aquatic and terrestrial animals, are discussed in depth in order to provide new ideas for remediation of soil and sediments polluted by sulfonylurea herbicides.


Assuntos
Herbicidas , Humanos , Herbicidas/análise , Ecossistema , Compostos de Sulfonilureia/toxicidade , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/metabolismo , Sulfonamidas , Agricultura , Biodegradação Ambiental
2.
Environ Res ; 236(Pt 1): 116699, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481057

RESUMO

For a long time, the well-known Gram-positive bacterium Bacillus thuringiensis (Bt) has been extensively studied and developed as a biological insecticide for Lepidoptera and Coleoptera pests due to its ability to secrete a large number of specific insecticidal proteins. In recent years, studies have found that Bt strains can also potentially biodegrade residual pollutants in the environment. Many researchers have isolated Bt strains from multiple sites polluted by exogenous compounds and characterized and identified their xenobiotic-degrading potential. Furthermore, its pathway for degradation was also investigated at molecular level, and a number of major genes/enzymes responsible for degradation have been explored. At present, a variety of xenobiotics involved in degradation in Bt have been reported, including inorganic pollutants (used in the field of heavy metal biosorption and recovery and precious metal recovery and regeneration), pesticides (chlorpyrifos, cypermethrin, 2,2-dichloropropionic acid, etc.), organic tin, petroleum and polycyclic aromatic hydrocarbons, reactive dyes (congo red, methyl orange, methyl blue, etc.), and ibuprofen, among others. In this paper, the biodegrading ability of Bt is reviewed according to the categories of related pollutants, so as to emphasize that Bt is a powerful agent for removing environmental pollutants.


Assuntos
Bacillus thuringiensis , Clorpirifos , Poluentes Ambientais , Inseticidas , Bacillus thuringiensis/genética , Poluentes Ambientais/metabolismo , Clorpirifos/metabolismo , Ibuprofeno , Proteínas de Bactérias , Endotoxinas
3.
Environ Res ; 236(Pt 1): 116619, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482127

RESUMO

Beta-cypermethrin is one of the widely used pyrethroid insecticides, and problems associated with the accumulation of its residues have aroused public attention. Thus, there is an urgent need to effectively remove the beta-cypermethrin that is present in the environment. Biodegradation is considered a cost-effective and environmentally friendly method for removing pesticide residues. However, the beta-cypermethrin-degrading microbes that are currently available are not optimal. In this study, Pseudomonas aeruginosa PAO1 was capable of efficiently degrading beta-cypermethrin and its major metabolite 3-phenoxybenzaldehyde in water/soil environments. Strain PAO1 could remove 91.4% of beta-cypermethrin (50 mg/L) in mineral salt medium within 120 h. At the same time, it also possesses a significant ability to metabolize 3-phenoxybenzaldehyde-a toxic intermediate of beta-cypermethrin. The Andrews equation showed that the maximum substrate utilization concentrations of beta-cypermethrin and 3-phenoxybenzaldehyde by PAO1 were 65.3558 and 49.6808 mg/L, respectively. Box-Behnken design-based response surface methodology revealed optimum conditions for the PAO1 strain-based degradation of beta-cypermethrin as temperature 30.6 °C, pH 7.7, and 0.2 g/L inoculum size. The results of soil remediation experiments showed that indigenous micro-organisms helped to promote the biodegradation of beta-cypermethrin in soil, and beta-cypermethrin half-life in non-sterilized soil was 6.84 days. The bacterium transformed beta-cypermethrin to produce five possible metabolites, including 3-phenoxybenzyl alcohol, methyl 2-(4-hydroxyphenoxy)benzoate, diisobutyl phthalate, 3,5-dimethoxyphenol, and 2,2-dimethyl-1-(4-phenoxyphenyl)propanone. Among them, methyl 2-(4-hydroxyphenoxy)benzoate and 3,5-dimethoxyphenol were first identified as the intermediate products during the beta-cypermethrin degradation. In addition, we propose a degradation pathway for beta-cypermethrin that is metabolized by strain PAO1. Beta-cypermethrin could be biotransformed firstly by hydrolysis of its carboxylester linkage, followed by cleavage of the diaryl bond and subsequent metabolism. Based on the above results, P. aeruginosa PAO1 could be a potent candidate for the beta-cypermethrin-contaminated environmental bioremediation.


Assuntos
Piretrinas , Poluentes do Solo , Pseudomonas aeruginosa , Biodegradação Ambiental , Piretrinas/metabolismo , Benzoatos , Solo , Poluentes do Solo/metabolismo
4.
Environ Pollut ; 318: 120925, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566677

RESUMO

Microplastics (MPs), an emerging pollutant, have been increasingly raising concern due to the potential impacts on aquatic organisms. Moreover, the environmental aged MPs always exhibit different environmental behavior and interaction effect with organic pollutants from virgin MPs. In this work, the single and combined toxicity impact on Chlorella pyrenoidosa, a symbiont representative, has been investigated between MPs (e.g., polyamide microplastic (PA6), 75 µm) and organic pollutants (e.g., sulfamethoxazole (SMX) and dicamba (DCB)). Growth inhibition, chlorophyll accumulation, superoxide dismutase (SOD), malondialdehyde (MDA), and catalase (CAT) were investigated with the primary or UV-aged PA6. Above 0.5 g/L PA6 (primary or UV-aged) inhibited cell growth and chlorophyll accumulation after 96 h cultivation as compared with the control. Besides, the inhibition impacts have enhanced as the UV-aging time extending in the single PA6 systems. The algae growth inhibition rate after 96 h cultivation in both the system i.e., single (PA6: 6.9%) and combined (PA6-SMX: 14.2%, PA6-DCB: 14.9%) was slightly lower than that of exposing in organic pollutants alone (SMX: 23.9%, DCB: 25.0%), while the chl. b concentration in 60 days UV-aged PA6 combined with SMX (1.19 mg/L) or DCB (1.40 mg/L) systems were higher than in single SMX (1.04 mg/L) or DCB (1.33 mg/L) system. In addition, there were several differences of the cellular oxidative stress in the combined system of SMX and DCB. Specially, it was not noticeable of three enzymatic activities for SMX exposing in the presence of primary or UV-aged PA6. While SOD, CAT, and MDA activities was obviously increasing after exposing in PA6 and DCB combined system, indicating the significant synergistic effect on algae cells damage. This research verified the remarkable combined toxicity between UV-aged MPs and organic pollutants on microalgae.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Clorofila , Microplásticos/toxicidade , Plásticos/farmacologia , Superóxido Dismutase , Poluentes Químicos da Água/análise , Raios Ultravioleta
5.
Microbiol Res ; 266: 127247, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403315

RESUMO

Fipronil is a phenylpyrazole insecticide used in various agricultural, horticulture, and veterinary practices. Besides its wide range of applications, it also causes severe health hazards to the non-targeted organisms especially in developing countries. Fipronil showed hepatotoxic, nephrotoxic, neurotoxic, and altered reproductive development and endocrine system in humans and animals. Several methods have been already introduced for the removal of toxic fipronil including physicochemical and by the implementation of microorganisms. The microbial methods of fipronil degradation are the most promising and environmentally sustainable. The remediation of fipronil from the environment is an emerging task due to its enhanced residual concentration. Herein, we discuss the bioremediation potential of microbial strains in contaminated soil and water. It is shown that fipronil can be remediated from the environment using combined ecotechnologies. This review discusses the toxicity, different physico-chemical and biological methods, and sustainable developments in fipronil-contaminated agriculture and aquatic environments.


Assuntos
Inseticidas , Pirazóis , Animais , Humanos , Biodegradação Ambiental , Pirazóis/toxicidade , Agricultura , Inseticidas/toxicidade
6.
Environ Res ; 216(Pt 4): 114819, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395859

RESUMO

The huge application of synthetic dyes caused a severe impact in the environment. In the present study, a physico-chemical strategy of heterogeneous-Fenton catalyzed by the natural ferrous ore has been established for toxic chemical degradation, of which the complex and high-expense repetitive pH adjustment procedures were escaping. And this natural heterogeneous catalyst also could be recycled and sustainable for toxic substances treatment involved in synergetic adsorption and oxidation. The siderite, served as an adsorbent and catalyst for the degradation of methylene blue (MB). Siderite exhibited a better adsorption capacity with a saturated adsorption capacity of ∼11.08 mg/g. Batch adsorption experiments have verified that adsorption rate and adsorption equilibrium followed pseudo-second-order rate model and Langmuir isotherm equation, respectively. The combination with H2O2, showed significant enhancement of MB degradation without any pH adjustment. The effect of siderite dosage, H2O2 dosage, MB concentration, initial pH, and reaction temperature on MB degradation was investigated, which also has indicated the excellent catalytic performance of siderite. About 99.71% of MB was degraded in 480 min with initial pH of 7.0, reaction temperature of 25 °C, siderite, and H2O2 dosage of 2.5 g/L and 122.38 mM, respectively. It was found that siderite could be reused and remained high degradation efficiency on MB after 5 times reutilization, which also could demonstrate the sustainable and effective process to degrade organic pollution. The generation of reactive species including ·OH and O2·- have been confirmed based on scavenger test and electron spin resonance (ESR) analysis, which was dominated by heterogeneous reaction. The possible degradation mechanisms of MB have been predicted based on spectrum scanning and GC-MS analysis. Moreover, acute toxicity assessment with marine photobacterium Vibrio fisheri was conducted to investigate the toxicity change in the adsorption/oxidation coupled process. This sustainable heterogeneous-Fenton technology has been verified as a promising and applicable process for toxic organic chemicals removal due to effective mineralization and detoxification assisted with the natural ore mineral through the simple operation and mild condtions.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Peróxido de Hidrogênio , Poluentes Químicos da Água/química , Cinética , Adsorção , Catálise
7.
J Hazard Mater ; 443(Pt B): 130319, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356521

RESUMO

The present study aimed to investigate the catalytic degradation produced by laccase in the detoxification of glyphosate, isoproturon, lignin polymer, and parathion. We explored laccase-glyphosate, laccase-lignin polymer, laccase-isoproturon, and laccase-parathion using molecular docking (MD) and molecular dynamics simulation (MDS) approaches. The results suggest that laccase interacts well with glyphosate, lignin polymer, isoproturon, and parathion during biodegradation. We calculated the root mean square deviations (RMSD) of laccase-glyphosate, laccase-lignin polymer, laccase-isoproturon, and laccase-parathion as 0.24 ± 0.02, 0.59 ± 0.32, 0.43 ± 0.07, and 0.43 ± 0.06 nm, respectively. In an aqueous solution, the stability of laccase with glyphosate, lignin polymer, isoproturon, and parathion is mediated through the formation of hydrophobic interactions, hydrogen bonds, and van der Waals interactions. The presence of xenobiotic toxic compounds in the active site changed the conformation of laccase. MDS of the laccase-substrate complexes confirmed their stability during catalytic degradation. Laccase assay results confirmed that the degradation of syringol, dihydroconiferyl alcohol, guaiacol, parathion, isoproturon, and glyphosate were 100%, 99.31%, 95.69%, 60.96%, 54.51%, and 48.34% within 2 h, respectively. Taken together, we describe a novel method to understand the molecular-level biodegradation of xenobiotic compounds through laccase and its potential application in contaminant removal.


Assuntos
Lacase , Paration , Lacase/metabolismo , Lignina/química , Simulação de Acoplamento Molecular , Biodegradação Ambiental , Xenobióticos , Catálise , Simulação de Dinâmica Molecular , Domínio Catalítico
8.
Environ Pollut ; 316(Pt 2): 120579, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336186

RESUMO

Tetrabromobisphenol A (TBBPA), a representative brominated flame retardant (BFR), generally could be debrominated and degraded effectively in photolysis systems with the high energy consumption. In this study, the novel sulfate radical (SO4•-) generation resource of dithionite (S2O42-), activated by the common transition metal of Fe3+, has been applied for establishing an innovative homogeneous advance treatment system for BFR treatment in water. When coupling Fe3+ with S2O42-, TBBPA degradation efficiency could be remarkably improved from 38.7% to 93.8% with the debromination and mineralization efficiency of 83.9% and 18.5% in 60 min, respectively. The primary reactive species also have been identified as SO3•-, SO4•- and •OH responsible for TBBPA treatment and the contributions of SO4•- and •OH have been calculated as 43.8% and 28.4% for TBBPA degradation, respectively. In Fe3+/S2O42- system, TBBPA was effectively degraded in a wide initial pH range (3.0-9.0), whose activation energy was calculated as 32.01 kJ mol-1. Due to the only operation of reagents dosing, the energy consumption and cost could be decreasing significantly without any light energy input and reaction conditions (e.g., pH and dissolved oxygen) adjustment compared with the general photolysis process. Moreover, some possible degradation approaches of TBBPA also have been proposed via GC-MS including debromination, hydroxylation, methylation, and mineralization in Fe3+/S2O42- system. And these probable degradation pathways also have been confirmed with the decreased Gibbs free energy (ΔG) based on density functional theory (DFT). This study has revealed that it was promising of Fe3+/S2O42- system for BFRs degradation and detoxification efficiently through the simple operation and mild condtions.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Bifenil Polibromatos/metabolismo , Retardadores de Chama/metabolismo , Fotólise , Água
9.
Indian J Dermatol Venereol Leprol ; 89(2): 237-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33969654

RESUMO

A nematode parasite, Dracunculus medinensis, causes dracunculiasis. Despite being non-fatal, this condition causes significant morbidity. Dracunculiasis is considered an eradicated disease in India since 1999. We report two cases that document the unusual linear morphea-like morphology of the calcified D. medinensis and the rare periorbital location of the worm. The cases presented here are rare and a diagnostic challenge, considering the eradicated status of dracunculiasis.


Assuntos
Dracunculíase , Dermatopatias , Animais , Humanos , Dracunculíase/diagnóstico , Dracunculíase/parasitologia , Dracunculus , Índia
10.
Crit Rev Biotechnol ; 43(8): 1129-1149, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36170978

RESUMO

The increased presence of xenobiotics affects living organisms and the environment at large on a global scale. Microbial degradation is effective for the removal of xenobiotics from the ecosystem. In natural habitats, biofilms are formed by single or multiple populations attached to biotic/abiotic surfaces and interfaces. The attachment of microbial cells to these surfaces is possible via the matrix of extracellular polymeric substances (EPSs). However, the molecular machinery underlying the development of biofilms differs depending on the microbial species. Biofilms act as biocatalysts and degrade xenobiotic compounds, thereby removing them from the environment. Quorum sensing (QS) helps with biofilm formation and is linked to the development of biofilms in natural contaminated sites. To date, scant information is available about the biofilm-mediated degradation of toxic chemicals from the environment. Therefore, we review novel insights into the impact of microbial biofilms in xenobiotic contamination remediation, the regulation of biofilms in contaminated sites, and the implications for large-scale xenobiotic compound treatment.


Assuntos
Ecossistema , Xenobióticos , Biofilmes , Percepção de Quorum/fisiologia
11.
Front Plant Sci ; 13: 1071693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507382

RESUMO

Vast quantities of synthetic pesticides have been widely applied in various fields to kill plant pathogens, resulting in increased pathogen resistance and decreased effectiveness of such chemicals. In addition, the increased presence of pesticide residues affects living organisms and the environment largely on a global scale. To mitigate the impact of crop diseases more sustainably on plant health and productivity, there is a need for more safe and more eco-friendly strategies as compared to chemical prevention. Quorum sensing (QS) is an intercellular communication mechanism in a bacterial population, through which bacteria adjust their population density and behavior upon sensing the levels of signaling molecules in the environment. As an alternative, quorum quenching (QQ) is a promising new strategy for disease control, which interferes with QS by blocking intercellular communication between pathogenic bacteria to suppress the expression of disease-causing genes. Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is associated with the diffusible signal factor (DSF). As detailed in this study, a new QQ strain F25, identified as Burkholderia sp., displayed a superior ability to completely degrade 2 mM of DSF within 72 h. The main intermediate product in the biodegradation of DSF was identified as n-decanoic acid, based on gas chromatography-mass spectrometry (GC-MS). A metabolic pathway for DSF by strain F25 is proposed, based on the chemical structure of DSF and its intermediates, demonstrating the possible degradation of DSF via oxidation-reduction. The application of strain F25 and its crude enzyme as biocontrol agents significantly attenuated black rot caused by Xcc, and inhibited tissue maceration in the host plant Raphanus sativus L., without affecting the host plant. This suggests that agents produced from strain F25 and its crude enzyme have promising applications in controlling infectious diseases caused by DSF-dependent bacterial pathogens. These findings are expected to provide a new therapeutic strategy for controlling QS-mediated plant diseases.

12.
Chemosphere ; 309(Pt 2): 136635, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183882

RESUMO

Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.


Assuntos
Poluentes Ambientais , Praguicidas , Humanos , Microbiologia do Solo , Ecossistema , Xenobióticos , Rizosfera , Solo , Plantas/microbiologia
13.
Bioresour Technol ; 364: 128031, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167178

RESUMO

The main objective of this review is to provide up to date, brief, irrefutable, organized data on the conducted experiments on a range of emerging recalcitrant compounds such as Diclofenac (DCF), Chlorophenols (CPs), tetracycline (TCs), Triclosan (TCS), Bisphenol A (BPA) and Carbamazepine (CBZ). These compounds were selected from the categories of pharmaceutical contaminants (PCs), endocrine disruptors (EDs) and personal care products (PCPs) on the basis of their toxicity and concentration retained in the environment. In this context, detailed mechanism of laccase mediated degradation has been conversed that laccase assisted degradation occurs by one electron oxidation involving redox potential as underlying element of the process. Further, converging towards biotechnology, laccase immobilization increased removal efficiency, storage and reusability through various experimentally conducted studies. Laccase is being considered noteworthy as mediators facilitate laccase in oxidation of non-phenolic compounds and thereby increasing its substrate range which is being discussed in further in the review. The laccase assisted degradation mechanism of each compound has been elucidated but further studies to undercover proper degradation mechanisms needs to be performed.

14.
Environ Pollut ; 309: 119688, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35793713

RESUMO

The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.


Assuntos
Poluentes Ambientais , Microalgas , Purificação da Água , Biocombustíveis , Biomassa , Poluentes Ambientais/metabolismo , Microalgas/metabolismo , Águas Residuárias
15.
Chemosphere ; 306: 135576, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35803375

RESUMO

The natural and anthropogenic sources of water bodies are contaminated with diverse categories of pollutants such as antibiotics, pharmaceuticals, pesticides, heavy metals, organic compounds, and other industrial chemicals. Depending on the type and the origin of the pollutants, the degree of contamination can be categorized into lower to higher concentrations. Therefore, the removal of hazardous chemicals from the environment is an important aspect. The physical, chemical and biological approaches have been developed and implemented to treat wastewaters. The microbial and algal treatment methods have emerged as a growing field due to their eco-friendly and sustainable approach. Particularly, microalgae emerged as a potential organism for the treatment of contaminated water bodies. The microalgae of the genera Chlorella, Anabaena, Ankistrodesmus, Aphanizomenon, Arthrospira, Botryococcus, Chlamydomonas, Chlorogloeopsis, Dunaliella, Haematococcus, Isochrysis, Nannochloropsis, Porphyridium, Synechococcus, Scenedesmus, and Spirulina reported for the wastewater treatment and biomass production. Microalgae have the potential for adsorption, bioaccumulation, and biodegradation. The microalgal strains can mitigate the hazardous chemicals via their diverse cellular mechanisms. Applications of the microalgae strains were found to be effective for sustainable developments and circular economy due to the production of biomass with the utilization of pollutants.


Assuntos
Chlorella , Poluentes Ambientais , Microalgas , Biomassa , Poluentes Ambientais/metabolismo , Substâncias Perigosas/metabolismo , Microalgas/metabolismo , Águas Residuárias , Água/metabolismo
16.
Chemosphere ; 296: 133916, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35149016

RESUMO

Pesticides are widely used in agriculture, households, and industries; however, they have caused severe negative effects on the environment and human health. To clean up pesticide contaminated sites, various technological strategies, i.e. physicochemical and biological, are currently being used throughout the world. Biological approaches have proven to be a viable method for decontaminating pesticide-contaminated soils and water environments. The biological process eliminates contaminants by utilizing microorganisms' catabolic ability. Pesticide degradation rates are influenced by a variety of factors, including the pesticide's structure, concentration, solubility in water, soil type, land use pattern, and microbial activity in the soil. There is currently a knowledge gap in this field of study because researchers are unable to gather collective information on the factors affecting microbial growth, metabolic pathways, optimal conditions for degradation, and genomic, transcriptomic, and proteomic changes caused by pesticide stress on the microbial communities. The use of advanced tools and omics technology in research can bridge the existing gap in our knowledge regarding the bioremediation of pesticides. This review provides new insights on the research gaps and offers potential solutions for pesticide removal from the environment through the use of various microbe-mediated technologies.


Assuntos
Praguicidas , Poluentes do Solo , Biodegradação Ambiental , Humanos , Praguicidas/análise , Proteômica , Solo , Poluentes do Solo/análise , Água
17.
Front Plant Sci ; 13: 1063393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714722

RESUMO

With the increasing resistance exhibited by undesirable bacteria to traditional antibiotics, the need to discover alternative (or, at least, supplementary) treatments to combat chemically resistant bacteria is becoming urgent. Quorum sensing (QS) refers to a novel bacterial communication system for monitoring cell density and regulation of a network of gene expression that is mediated by a group of signaling molecules called autoinducers (AIs). QS-regulated multicellular behaviors include biofilm formation, horizontal gene transfer, and antibiotic synthesis, which are demonstrating increasing pathogenicity to plants and aquacultural animals as well as contamination of wastewater treatment devices. To inhibit QS-regulated microbial behaviors, the strategy of quorum quenching (QQ) has been developed. Different quorum quenchers interfere with QS through different mechanisms, such as competitively inhibiting AI perception (e.g., by QS inhibitors) and AI degradation (e.g., by QQ enzymes). In this review, we first introduce different signaling molecules, including diffusible signal factor (DSF) and acyl homoserine lactones (AHLs) for Gram-negative bacteria, AIPs for Gram-positive bacteria, and AI-2 for interspecies communication, thus demonstrating the mode of action of the QS system. We next exemplify the QQ mechanisms of various quorum quenchers, such as chemical QS inhibitors, and the physical/enzymatic degradation of QS signals. We devote special attention to AHL-degrading enzymes, which are categorized in detail according to their diverse catalytic mechanisms and enzymatic properties. In the final part, the applications and advantages of quorum quenchers (especially QQ enzymes and bacteria) are summarized in the context of agricultural/aquacultural pathogen biocontrol, membrane bioreactors for wastewater treatment, and the attenuation of human pathogenic bacteria. Taken together, we present the state-of-the-art in research considering QS and QQ, providing theoretical evidence and support for wider application of this promising environmentally friendly biocontrol strategy.

18.
J Biomol Struct Dyn ; 40(2): 764-779, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32924811

RESUMO

To comprehend the molecular mechanism of zinc transportation by bacteria tends to be a very complicated and time-consuming method. To date, fragmented and scanty studies are available about the mechanism of zinc transportation at molecular level. So, the present study scrutinizes in silico pathways of zinc fractions transportation, specifically in Bacillus spp. stimulating dynamic performance of zinc. For this, the constructed model reveals Zur to be the prime regulatory transport protein maintaining bacterial survivability at fluctuation in zinc concentrations, thereby attaining zinc homeostasis. Topology for hub nodes displays appropriate evidence of the molecular basis of bacterial zinc imports and exports. Further, the molecular docking reveals interaction of Zur protein with the zinc ligands (ZnCO3 and ZnSO4). By validation of binding affinity, binding energy and docking score via Autodock Vina and X-Score, the ZnSO4 compound was found to possess excellent stability in the active pocket site of Zur, stating Zur-ZnSO4 complex to be the most potential. Owing to which, the Zur-ZnSO4 complex was selected and subjected to molecular dynamics simulation, revealing RMSD, RG, RMSF, SASA and interaction energy for 20 ns trajectory period. Henceforth,the study provides novel insight into revealing the unrecognized Zur protein pathway, assisting zinc transportation, besides retaining best interaction with ZnSO4 ligand. This is the first system biology where molecular docking and molecular dynamics simulation-based investigation decipher the role of Zur transport protein system and interaction of its amino acids with zinc ligands in a simpler and economical form via in silico techniques.Communicated by Ramaswamy H. Sarma.


Assuntos
Bacillus , Zinco , Bacillus/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fatores de Transcrição , Zinco/metabolismo
19.
J Hazard Mater ; 420: 126618, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329102

RESUMO

The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.


Assuntos
Bactérias , Xenobióticos , Bactérias/genética , Biodegradação Ambiental , Plasmídeos/genética
20.
Dermatol Surg ; 47(9): 1243-1248, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34115675

RESUMO

BACKGROUND: Hair transplantation in scarring alopecia is challenging and transplant surgeons are hesitant due to fear of poor graft survival apart from the risk of reactivating the disease. OBJECTIVE: Survival rate of hair follicles transplanted in cases of lichen planopilaris (LPP). To correlate histopathological and ultrasonography findings and their impact on graft survival. METHODS: In 32 patients of inactive LPP included, a 5-cm2 recipient area was tattooed. The follicular unit density of the transplanted area was 20 to 25 FU/cm2. Postoperative follow-up was conducted at 6, 12, and 24 months. The recipient area density and ultrasound biomicroscopic parameters were assessed at each follow-up visit. RESULTS: The survival of grafts was 78.62% at 12 months, and 79.96% at 24 months. Histopathology variables studied at the time of transplantation such as epidermal atrophy, fibrosis, and inflammatory infiltrate were not found to have any effect on the graft survival. Ultrasonography parameters of the involved scalp skin were found to be markedly improved on follow-up. This suggests that the overall health of the scalp improved after hair transplantation. CONCLUSION: Follicular unit excision is a ray of hope for cases of primary cicatricial alopecia such as LPP because the result is satisfying to both the patient as well as the doctor.


Assuntos
Cabelo/transplante , Líquen Plano/cirurgia , Dermatoses do Couro Cabeludo/cirurgia , Ultrassonografia/métodos , Adolescente , Adulto , Feminino , Sobrevivência de Enxerto , Humanos , Líquen Plano/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Dermatoses do Couro Cabeludo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...